skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murthi, Monisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The sol-gel method has shown immense potential in materials science and nanotechnology. One of the cornerstone applications of the sol-gel technique includes the fabrication of inorganic glasses and glass-ceramics at relatively low temperatures as an alternative to conventional high-temperature melt-quench techniques. In recent times, glass fabrication with the sol-gel method has extended to additive manufacturing (AM), also referred to as 3D printing. Current sol-gel, glass AM uses solution-based gel compositions to produce three-dimensional glasses through layer-by-layer deposition and/or using photocurable polymer resins. Owing to its significant advantages of being able to fabricate glass components with arbitrary and complex geometry, AM presents a tantalizing opportunity to fabricate functionalized glass materials, increasing the technique’s popularity over the past decade. In this review and perspective, recent progress in combining sol-gel synthesis and additive manufacturing technologies used for obtaining inorganic glasses are discussed, specifically highlighting the research carried out in North America, and a prospectus of the field and emerging areas of interest and need is presented. Graphical Abstract 
    more » « less